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Abstract- Electroencephalographic(EEG) is a vital signal to analysis the neurological diseases in human being. This 

EEG signal captured even in highly hospitalic and standard environment may currpted by certain noise which are 

termed as artifact in therapeutic term. These noise may disturb the quality of signal. Thus, mitigation of these EEG 

artifacts is an significant step. In this work an developedfiltering mechanism is projected formotion artifacts 

eradicationfrom single channel EEG signal. The input sole channel EEG signal isdecomposed into many different 

channel signal. Moreover, this multichannel signal is applied to an cascaded Blind Source Separation (BSS) and 

wavelet transform approachs to eleiminate the artifacts as well as randomness available in the signal due to this 

artifats. The results are tested with the existing work in the  EEG artifact removal which shows outperformance of 

the proposed method.  

Keywords: EEG, EEMD, CCA, DWT, EEMD-ICA, EEMD-DWICA. 

I. Introduction 

Superlative health evaluations are a complex field of study for medical science, where precise signals 

and imaging are subject to low computational costs. The simplicity of a measuring device is also 

important because they are used primarily to acquire signal from patients which make handling of the 

system simple and error-free.The non-physiological signal introduced in the EEG signal may disturb the 

quality of signal. Thus artifact mitigation is an important research field [1]. For this artifact suppression 

many algorithm such as BSS and wavelet transform and adaptive filters are applied [2] 

Many artifacts for example electrooculogram (EOG), Electromyography (EMG), Elctrocardiography 

(ECG) and motion artifact [4-8] influence the regular behavior of the EEG signal. However, amongst 

them motion artifact rigorously disturb the quality of signal because this artifact get superimposed on the 

signal. Moreover affect the signal in broad sectrum [17]. Therefore, in the next section the methodology is 

proposed and discussed in detail to mitigate the motion artifact from EEG signal.  

2. Proposed System Model:  

The proposed architecture (Figure 1) presents the prototype of efficientexplanation. In this algorithm, 

primary the signal is preprocessed and futher applied to EEMD algorithm to convert single channel EEG 

signal into multi-channel signal. Further, ths multichannel EEG signal is sourced to a CCA algorithm for 

filtering and Pearson’s correlation coefficient is applied for detection of artifacts. These processed results 

are passed through the DWT algorithm to filter the left traces of artifacts from EEG signal.  
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Figure 1: Proposed Architecture for EEG artifacts removal in single channel EEG signal. 
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3. Proposed algorithm: 

Step 1: Consider the EEG signal available on [18] as the ground truth signal, and then prepared the 

synthesized data by creating a different artifact templates and simulating these templates with 

different amplitude, different duration (stretching from 15μS to 1S)andat added at different 

locations and finally superimposed these templates onto the ground truth signalto 

impressionist the motion artifacts behavior. 

Step 2: This createdsignal is preprocessed (baseline wandering) by suppressing thenoise with two 

pass band frequencies of 0.5 Hz to 99 Hz. 

Step 3: The single channel signal 𝐵(𝑡) is decomposed into multi-channel signal through EEMD 

algorithm [9-11] results into Intrinsic Mode Functions(IMFs) [10]. These IMFs are mono-

componets and zeromean oscillatory functions. 

B(t) = ∑ Ci(t)n
i=1 + rn(t)(1) 

 

 Where,𝐶𝑖(𝑡)are IMFs components,𝑟𝑛(𝑡)is residual of the data and n is the number of iteration. 

Step 4: These IMFs are processed through Blind Source Separationapproach (CCA). The CCA 

algorithm[17] provides components which are statistically uncorrelated (CCs), each having 

distinguished properties, so some CCs can represent motion artifactssources. Hence, blind 

source separation of IMFs has been done by CCA as: 

𝑌𝑖(t) = CCA [Ci(t)]       Where, i=1, 2,...n                         (2) 

CCA algorithmgenerates correlated source components𝑌𝑖(𝑡)from IMFs 𝐶𝑖(𝑡). 

 Where,Ci(t) = P ∗ Q                             (3) 

 Where, Pis source signal,𝑄 is mixing matrix and both are unknown. 

Step 5: The steps required foridentifying motion artifact CCs after CCA algorithmareas follows: 

a. Let 𝑌𝑖is CC components matrix. Consider first sourceCC of 𝑌𝑖(i.e. 𝑌1) by putting zero value to 

all components except first column. Further, restCCs are mixed with mixing matrix to recreate 

the new IMFs. 

imf = w ∗ Yĩ(4) 

Where, w is the mixing matrixand 𝑌𝑖̃ is reconstructed CC.  

b. Reconstruct the signal  by adding all IMFs. 

rec(k) = ∑ imft
k=1                                            (5) 

c. Measure Pearson’s correlation coefficients between an original signal X(t)and reconstructed 

signalrec(k). 

corr(k) =
∑ (X(k)−X̅)(rec(k)−rec̅̅ ̅̅ ̅)n

√∑ (X(k)−X̅)2
n √∑ (rec(k)−rec̅̅ ̅̅ ̅)2

n
(6) 

 Where, X(k) is the kth value of the X(t); 

  X̅is the mean of X(t); 

  rec(k)isthe kth value of  the reconstructed signal; 

  rec̅̅ ̅̅ is the mean value of the reconstructed signal;   

  and total reconstructed signal componentsk=1 to t. 

d. Repeat this step (from a to c) fori=1 to n 

Y(i, : ) = 0 

 
 Where,ith row become zero. 
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e. Put all CCs zero having Pearson’s correlation coefficient below a given threshold 𝑐𝑜𝑟𝑟(𝑘) <

0.01. 

f. Now mix all rest CCs with mixing matrix and reconstruct the new IMF 𝑧(𝑘) as follows: 

z(k) = imf = w′ ∗ yĩ                             (7) 

     Where, w′ is transpose of the mixing matrix. 

Step 6: Motion artifacts CCs identification and removal is followed by Discrete Wavelet Transform 

over each IMFs Z(k) to have artifact free CCs. 

  

Step 7: Wavelet decomposition is trailed by RigrsureThresholding. 

Step 8:Reconstruct the Signal B by adding all IMFs. 

B(t)̂ = ∑ imf(k)h
k=1 (8) 

 Where, k=1 to h(Rest number of CCs) 

 This signalB(t)̂ isnow artifact-freeEEG signal. 

In order to estimate the efficacy of proposed algorithm, a synthetically artifactual EEG signal is generated 

and compared with ground truth (original) EEG signal is shown in Figure 2.The synthetic motion 

artifactual EEG signal ispresented in red color while original EEG signal is in blue color. It is observed 

from Figure 2 that even after synthetically artifact generation, the information has been preserved while 

maintaining high peaks as shown in highlighted black boxes in the figure below.  

 

Figure 2: Properties of Synthetic Artifact Signal. 

Therefore, it can be stated that synthetical motion artifacts corrupt the EEG signal neural information. The 

deliberated EEG artifact removal methods enactmentsare assessed by certain evaluation matrices. These 

evaluation parameters are discussed in the next section.  
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4. Performance Evaluation Parameters 

To perform quantitative evaluation, the statistical performance of the proposed EEG artifact removal 

methodare calculated by following parameters. 

a. ∆SNR: The∆SNR is calculated by: 

∆SNR = 10 log10 (
σx

2

σafter
2 ) − 10 log10 (

σx
2

σbefore
2 )(9) 

Where,𝜎𝑥
2is the pure EEG signal variance and  𝜎𝑏𝑒𝑓𝑜𝑟𝑒

2  is  the artifactual EEG signal variance 

and 𝜎𝑎𝑓𝑡𝑒𝑟
2   is the cleaned EEG signal variance. Error signal is calculated by the difference 

between motion artifactual EEG signal and pure EEG signal [5]. 

b. Lambda:This is a difference in correlation between signalswhich shows the percentage 

reduction in artifacts denoted by λ. 

λ = 100 (1 −
Rclean−Rafter

Rclean−Rbefore
)                             (10) 

 Here 𝑅𝑏𝑒𝑓𝑜𝑟𝑒  is a correlation between pure and artifactual EEG signal and 𝑅𝑎𝑓𝑡𝑒𝑟  is a

 correlation of signal after artifacts mitigation process and 𝑅𝑐𝑙𝑒𝑎𝑛  is the correlation between 

epochsof known clean data. high λ value shows effective artifactremovalperformance [5]. 

c. Power Spectral Density (PSD):Anarbitrary signal hasfinite average power can be 

characterized by PSD.This PSD can be defined as distribution of average signal power 

over frequency. The PSD can be presented as: 

∅(𝜔) = lim
𝑁→∞

𝐸 {
1

𝑁
|∑ 𝑦(𝑡)𝑒−𝑗𝜔𝑡𝑁

𝑡=1 |
2

}(11) 

 

Where, 𝑦(𝑡)is a zero meanrandomsignal, N is length of the signal 𝑦(𝑡) and E function is used to 

calculate the mean value of function. 

Pearson’s correlation coefficient is also calculated to evaluate the measure of similarity between 

two input signals if they are shifted from one another. 

d. PSD Improvement:PSD Improvement is calculated by finding the change between PSD 

of the syntheticEEG signal to PSD of the ground truthEEG signal. 

psd_improvement = (sum(p2)/sum(p2(1: 891))) − (sum(p1)/sum(p1(1: 891)))             (12) 

Where,𝑝1 is the PSD of artifact signal and  𝑝2 is the PSD of artifact removed signal. The length 

of the EEG signal is considered till 891 units. 

e. Correlation Improvement:The correlation difference between artifactual and pure EEG 

signal is used as the performance measure. The percentage correlation improvement 𝜇is 

defined as: 
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μ =  100 ∗ (1 − corr((GT − AFT)/(GT − BEF))                                     (13) 

The term in the denominator defines the improvement in the correlation, therefore, the higher 

value of 𝜇gives better artifact removal capacity.Where, GT denoted the ground truth (original) 

value, AFT denotes the signal after artifact removal and BEF denotes the signal before artifact 

removal. 

f. RMSE: The root mean square error between the ground truth data, signal with artifacts 

and signal after artifact removal is calculated and defined as; 

RMSEfree =  sqrt (mean((GT − AFT).2 ))       (14) 

RMSEart  =  sqrt(mean((GT − BEF).2 ))    (15) 

The𝑅𝑀𝑆𝐸𝑓𝑟𝑒𝑒 is an error between the pure EEG signal and cleaned EEG signal and 𝑅𝑀𝑆𝐸𝑎𝑟𝑡is 

an error between the original signal and artifactual EEG signal.The method which minimizes the 

value of 𝑅𝑀𝑆𝐸𝑓𝑟𝑒𝑒 in comparison to 𝑅𝑀𝑆𝐸𝑎𝑟𝑡  is suggested as an optimal method for artifact 

removal.The minimum value of RMSE justifies improved artifact separation. 
 

g. Spectral Distortion (𝐏𝐝𝐢𝐬): The Spectral Distortion Pdisis calculated asfollows: 

Pdis =
∑ PSDrecon(f)2

∑ PSDref(w)2 (16) 

  
Where, 

 PSDref(w)= PSD of the reference signal; 

 PSDrecon(f)= PSD ofthe reconstructed signal. 

 The spectral distortion Pdisisgiven by PSD ratio of the reconstructed signal to the reference EEG 

signal[18]. 

5. Results and discussion: 

The EEG signal databaseisassimilated from the Physionet database [18]. Themotion artifactual EEG 

signal issynthetically simulated. The proposed work numericalassessmentis performed using above 

synthetic generated EEG datasets. Table I presents the comparison of the projected EEG motion artifact 

eliminationapproaches with present methods based on various evaluation parameters. The artifact 

removal methods are applied on artifactual EEG signal withvariousnoises amount as (5, 10, 15, 20 and 

25). 

Table I: Comparison ofthe proposed method with existing methods. 

SNR EEMD[10] EEMD-ICA [19] EEMD-CCA [5] EEMD-CCA-DWT[Proposed] 

DSNR(Difference in Signal to Noise ratio) in dB 
5 12.980 1.174 24.6843 31.7012 

10 13.896 10.1385 16.7186 24.016 

15 13.851 15.215 41.945 49.108 

20 13.894 1.996 20.131 27.4324 

25 13.993 13.051 23.943 31.2015 
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Lambda(Ideal Value= 100) 

5 52.247 11.5139 70.526 81.9765 

10 56.851 62.969 59.63 77.7068 

15 56.3122 75.373 83.884 88.0863 

20 56.5040 18.599 65.193 80.089 

25 56.40 70.669 70.313 82.209 

PSD Improvement 

5 -0.9032 -0.1965 -0.8987 1.3523 

10 -0.9904 1.6767 -1.037 1.2353 

15 -0.9366 0.388 -0.7271 1.3846 

20 -0.998 -0.5352 -0.9644 1.7338 

25 -0.9425 2.117 -0.9544 1.5165 

Correlation Improvement (𝜇) 

5 0.0072 0.0044 0.0056 0.0111 

10 0.0079 0.0076 0.0056 0.01 

15 0.0121 0.0161 0.012 0.0209 

20 0.0073 0.0073 0.0038 0.0064 

25 0.0066 0.0275 0.0052 0.0093 

Improvement in Spectral Distortion (Pdis) 

5 0.8556 0.6487 0.7099 0.7374 

10 0.8965 0.880 0.8625 0.8288 

15 0.8963 0.884 0.8285 0.8341 

20 0.9021 0.660 0.8309 0.8802 

25 0.9008 0.9107 0.9115 0.9237 

RMSE(Root Mean Square Error) 

5 0.1594 0.2782 0.1099 0.0971 

10 0.1519 0.1776 0.1367 0.1111 

15 0.1520 0.1446 0.089 0.0881 

20 0.1510 0.2607 0.1223 0.1035 

25 0.1509 0.1575 0.111 0.0977 

 Table I summarizes the detail information based on artifact removal and signal distortion. The 

proposed artifact removal method is compared withan existing artifact removal algorithmslike EEMD-

CCA[5], EEMD-ICA [19] and EEMD [10] with evaluation parameter as DSNR, Lambda, Spectral 

Distortion, PSD,Correlation improvement and RMSE. It isobserved from Table I that the parameter 

DSNR has been improvedsignificantly usingthe proposed method as compared to existing artifact 

removal method [5] by 28%.This results inEEG signal quality improvement after motion artifact removal.  

Parameter Lambda (λ) signifies the percentage of artifact removal. The proposed method shows 

improved artifact removal in comparison to existing artifact removal method [5] by 17%, due to wavelet 

filtering. The DWT algorithm mitigates the random effect of motion artifacts from EEG signal 

effectively. The Pearson’s correlation coefficient results in a better correlation of signal according to the 

sources,resulting in  improved separation of artifacts from EEG signal. Therefore,the correlation 

coefficient has been improved by the proposed method as can be observed from Table I. One important 

issue which must be discussed here is that, due to the simulation of artifacts at different locations and 

added at different time durations, the performance of proposed algorithm do not follow any specific trend 

and sometimes results behave randomly.  
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The PSD of reconstructed signal after motion artifact removal is close to thePSD of the reference 

signal.This signifies an improvement in spectral distortion by the proposed method. In addition,  the 

proposed method also demonstrates reduction in RMSEparameter by 12% in comparison to existing 

algorithms [5].In the proposed algorithm, the application of DWT after EEMD-CCA cascaded approach 

supresses the motion artifacts randomness and preserves the EEG signal information discussed in the next 

subsection.  

a. Meaningfulness of Data after artifact removal:In this section the prominence of the proposed 

method is elaborated for maintaining the EEG neural information after motion artifact removal. 

 

Figure 3: Comparison of synthetic Artifact signal and with artifact removal. 

 Figure 3suggests that the proposed method removes the motion artifacts from the synthetically 

generated artifactualEEG data and also preserve the peak amplitude variations.The EEG signal contains 

required information and important features which is maintained even after artifact elimination. The EEG 

signal doesn’t lose the meaningful data as can be seen under the red color boxes. It can be observed from 

the first red box that initially there is a peak impulse which remainsthere after the artifact is suppressed. 

b. Validation of the proposed  method with real-time data: In order to check the feasibility of the 

proposed method, the proposed algorithm is also tested on real-time original EEG data without any 

additional synthetic artifact generation. The real-time EEG data has been taken from an online open 

source interface [18]. It is observed  from Figure 4 that the proposed algorithm preserves meaningful 

information from the EEG data even when applied on real time captured EEG.Many real-time ambulatory 

services such as seizure detection of epilepsy patients  need additional motion sensors such as an 

accelerometer to track the motion artifacts. However, with the proposed method, there is no need for such 

additional attachment, because EEMD-CCA-DWT approach removes the EEG motion 

artifactautomatically and successfully. This artifacts removalfacilitatesthe accurate prediction of neural 

diseases.  
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Figure 4:  Comparison of Original and Smoothen EEG Signal with EEMD-CCA-DWT. 

Moreover, the proposed method quantitative evaluationis performedby plotting different 

parameters with respect to artifact SNR as shown in Figure5, 6, 7 and 8. 

 

Figure 5: Signal Distortion Measurement in terms of RMSE for Different Artifact SNR. 
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Figure 6: Signal Distortion Measurement in terms of Spectral Distortion Improvement for Different 

Artifact SNR. 

Figure 5 presents the RMSE evaluation parameter for EEG motion artefact removal (EEMD-CCA-DWT) 

and EEMD- CCA with RMSE as evaluation parameter for different SNR artifacts. It is found that RMSE 

values were reduced considerably in order to suggest that artifacts were greatly removed for the proposed 

process filtered signal. Figure 6 shows that a spectral distortion improved by the EEMD-CCA-DWT 

filtered signal for the particularly low and high Artifact SNR values is obtained in comparison with the 

EEMD-CCA .. Current methods[5] work well however from SNR artefact 7.5 to 15dB due to the 

enhanced segregation of artifacts. 

 

Figure 7: Artifact removal measurement in terms of Lambda for different artifact SNR. 

 

Figure 8: Artifact removal measurement in terms of DSNR for different artifact SNR. 

Figures 7 and 8 show the level of deletion by plotting and analysing the Lambda and DSNR parameters 
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method has therefore improved signal quality. This contrast shows the excellent efficiency of the system 

proposed.  

Figure 9: PSD plot comparison for EEG signal and artifact removal algorithms. 

The PSD is used to measure signal strength relative to the frequency. PSD (Power Spectral 

Density). The PSD is determined from the FFT signal spectrum, and thus provides an efficient way to 

discern the frequency difference in amplitude. Figure 9 shows the compare PSD plot for blue-colored 

random EEG data, filtered in a yellow colour by EEMD-CCA process, filtered in a red colour using the 

suggested method. 

It can be seen from Figure 9 that the artifactual EEG signal is better smoothened with EEMD-

CCA-DWT approach, specifically in the high-frequency region which is effected due to the motion 

artifacts.These motion artifacts  have broad spectrum behavior with high amplitudes. In the proposed 

algorithm the application of Pearson’s correlation coefficient results in improved correlation, 

therefore,betterEEG artifact separation. Finally, DWT filter is applied to smooth the randomness of the 

motion artifacts.These motion artifacts have high amplitude and frequencies.Therefore, PSD in the higher 

frequency region has been reduced after the motion artifact removalit is clear from the red color PSD plot. 

Thus, the proposed methodology (EEMD-CCA-DWT) outpeforms than the existing artifact 

removal method bypresenting the improved performance in all the evaluation parameters proves the 

success of method. 

Conclusion 

Enhanced technique is proposed for eliminating EEG motion artefacts. The artifactual EEG signal is pre-

processed by EEMD to break down single-channel EEG signal to multi-channel signal. Each IMF 

displays a different little set of frequencies. Nevertheless, if the signality is disrupted as objects, these 

low-amplitude IMFs in the high-frequency region would be available. The use of the CCA algorithm 
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isolates certain high-frequency components. As a separate signal source, the signal and the objects source 

are considered. After removing the artefact portion all the IMFs will be reconstructed. On these re-

engineered IMFs the DWT algorithm is used to smooth the randomness of the motion system that is 

possible even with the EEMD-CCA approach. The performance of the work proposed increases with a 

28% increase in DSNR, a 17% improvement for the Lambda and a 12% decrease in RMSE compared 

toexisting artifact eliminationtechnique [5]. The statistical results of the study showed that the proposed 

algorithm exceeds the artifact removal approach and retains useful EEG signals. 
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